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ABSTRACT

A Guidance-Navigation Separation Theorem. * JAMES E. POTTER, Staff

Engineer, Experimental Astronomy Laboratory, Massachusetts Institute of Tech-

nology, Cambridge 39, Massachusetts.

A trajectory control system for a space vehicle may be divided into two sub-
systems: the navigation subsystem which filters noisy navigation measurements in
order to generate estimates of the vehicle's position, velocity and mass and the guidance
subsystem which uses this information to generate commands for the vehicle propulsion
system in order to accomplish the assigned mission with a minimum cost. Generally,
in order to obtain an optimum control system it is necessary to coordinate the
design of the two subsysgems so that the guidance subsystem is as insensitive as
possible to the expected navigation errors and the type of errors produced by the
navigation subsystem haa the least effect on guidance. However, in the somewhat
idealized case when the vehicle dynamical equations are linear and the cost function
is quadratic, the separation theorem states that the optimum control system is
obtained when the guidance and navigation subsystems are designed separately
without considering their interaction. This result was obtu.ined for sampled data
control systems by Gunkel and Joseph and is extended to continuous time contrgi

systems in the present paper. /7(1 ,9()

*Work supported by NASA Grant NsG 254-62.



A GUIDANCE-NAVIGATION SEPARATION THEOREM
by

Dr. James E. Potter
Experimental Astronomy Laboratory
Massachusetts Institute of Technology

Sectior{ 1 Introduction

The subject of this paper is the design of a linear black box that receives navi-
gation measurements as inputs and generates outputs which control the thrust magnitude
and vectoring of a space vehicle propulsion system. It will be agsumed that the navi-
gation measurement process and the vehicle dynamical equations can be linearized and
that it is desired to design the black box to minimize the statistical mean of a quadratic
mission. cost function involving fuel expended, deviation from the reference or mean
trajectory and terminal error.

For the purposes of design, the overall vehicle control system is often broken up
into two parts - the navigation and guidance subsystems. The navigation subsystem proc-
esses navigation measurements to obtain a running estimate of the vehicle state. Navi-
gation measurements 6rdinarily congist of space sextant sightings, star-landmark track-
er outputs, radar data, and accelerometer outputs. The vehicle state might consist of
vehicle position, velocity, mass and navigation instrument biases.. The guidance sub-
system makes use of the state estimate obtained from the navigation subsystem to gener-
ate ini)uts to the vehicle propulsion system in order to achieve the mission with mini-
mum cost. This terminology is somewhat prone to confusion since the lerms navigation
system and guidance system both are frequent. y used to designate the overall control
system, However, the definition.* given above are in common use and accurately de-
scribe the design situation.

In their Ph, D. theses, Gunkel and Joseph considered sampled data or discrete
time control systems having measurements contaminated with white noise ns inputs.
They showed that in this case cptimum guidance and navigation subsystems'can be
synthegized independently. 'The guidance subsystem is designed to minimize the mission
cost function assuming perfect navigation and that there are no random trajectory dis-
turbances due to guidance implementatic;n errors or other causes. Navigation is accom-
plished by using a minimum variance (or maximum likelihood or Wiener - all terms
inean about the same thing) statistical filter to obtain the vehicle state from the navi-
gation measurements. The overall navigation - guidance black box obtained in this way
is optimum for the given mission cost function, Thus, synthesis of the navigation and
guidance subsystema can be carried out separately and only the design of the guidance

- subsystem depends on the mission cost function. 1.2
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In this paper, the Gunkel - Joseph separation theorem is proved for the continu-
ous control case with navigation measurements contaminated with correlated noise.,
The dynamic programming approach employed by Gunkel and Joseph is not used e:xplicitly
although it is inherent in the present meéthod of proof. The present analysis also applies
to the sampled data case if the time integrals are replaced by sums, and yields a some-
what different proof than those of Gunkel and Joseph, In the course ¢ f{ the proof an inter-

esting identity relating to optimum control is derived.

The validity of Gunkel - Joseph syntheses rests on the linearity of the vehicle
dynamical equationé and the navigation measurement process and the use of a quadratic
mission cost function. Experiehce has shown that linearizing vehicle dynamical equations
leads to fairly accurate results and most navigation system design depends on linearizing
the navigation measurement process, If the mission cost function is not quadratic, it
may still be reasonable to consider only the quadratic term in the Taylor series expan-
sion of the cost function when carrying out a perturbation analysis about an optimum
trajectory. Three instances in which a quadratic mission cost function is appropriate in

space vehicle control follow.

(1) A quadratic mission cost function arises in the most straightforward way in
the case of a vzhicle employing electric propulsion. With constant power, variable
specific impulse and constant engine effeciency, minimizing propellant expenditure cor-

responds to minimizing

c={"janl? at (1-1)
= a, -
A "’Tl
where ag represents thrust acceleration. A more realistic cost function is
b '
_ 2 ! 2
C =k |5'r| +) . '_a_Tl dt (1-2)
where X represents terminal error. This formulation allows a trade off between tar-

geting accuracy and fuel expenditure. If k is zero in equation (1-2), the guidance system
gain will become excessive in the vicinity of the target.

(2) With discrete impulsive thrusting or velocity corrections, a reasonable de-
sign approach is to try to minimize the mean of the sum of the squares of the velocity
increments plus the target miss. In this case ttﬁe cost function is given by

_ 2 \ 2 .
C = kl&r' + Z‘ly"rl (1-3)
) k=1
It is frequently felt that, if there is a large state of uncertainty at the time when a velac-
ity correction is to be made, it is not desirable to make the full correction computed on
the assumption that the state estimate is exact, since new velocity errors would be in-

troduced which would later have to be corrected. This is probably true when the cost
function is the total fuel expended in making the velocity corrections. However, in the

2



case of the quadratic cost function in equation (1-3), the separation theorem implies
that the best strategy is, regardless of the actual state uncertainty, to make the full
velocity correction at each correction time as if there were no state uncertainty.

(3) In the chemical powered segments of a space mission the goal is often to
follow a reference trajectory which iz optimum in some sense. The function of the con-
trol system in this case is to minimize the deviations from the nominal thrust program
and the reference trajectory duc to nonstandard initial conditions and vehicle parameters.
A suitable cost function for this situation is

I D, ~b
2 2 ! 2
= + 4\
C = ky X kzsalgl dt J“i' dt
a
Here, x denotes the deviation from the state the vehicle would have on the reference
trajectory and u denotes the deviation from the nominal thrust program.

The separation theorem also applics to attitude control system design and instru-
ment design or other control problems where a linear dynamical system modeal and a
quadratié cost function are appropriate,

It will be assumed that the behavior of the dynamical system is described by the
linear vector differential equation

3 =FMt)x+GMu + vy (1-4)

In this equation, the k-dimensional vector x represents the output or state of the dynamical
system, the p-dimensional vector u represents the control input to the dynamical system‘
and the k-dimensional vector y represents the disturbing forces driving the dynamical
system, F(t! and G(t) denote k by k and k by p matrices respectively, The mission or
control problem will be assﬁmed to start at time t = 0 and end at time t = f,

The object in designing the feedback loop which generates the dynamical system
control input u using information about its output x is to minimize the quadratic mission
cost function

f
C= 3:_T(f) C, x(f) + S} {}_IT(t) Cylthu(t) + ggT(t) Calt) g_(t)} dt (1-5)

In this cost function, the k by k matrix ¢ determines the weighting to be given to ter-
minal error, the p by p matrix Cz(t) weights the magnitude of the corrective signal
generated by the feedback loop and the k by k matrix C,(t) weights the error in state
during the mission The matrices Cy, C,(t) and C4(t) are assumed to be positive




definite and symmetric. The term \_x'rC-_!l_n is included in the cost function either to econo-
mize on fuel usedto control the system, as would be the case in making velocity correc-
tions to control the trajectory cf a space vehicle, o to keep the control input with.un the
linear respouse range of the dynamical system. If this term is not included in the cost
functioa, ‘the mathematically optimum feedback loop has infinite gain and nulls out the
state error by sending a delta function control signal to the dynamical sysiem as soon

as the system is turned on. This kind of performance is generally not what one is aiminé
for in a real system and it is therefore necessary to include the chzg terin in the cost

function.

if the mission is already partiaily completed, C(t) given by the formula
£ .
Clt) = x7 (0 C x(D + K {chzg +x7 Cy )_c} dt (1-6)

will denote the cost of completing the mission from time t onward.

The signals availablc for generating the control signal u will be assumed to be of
the form ’
m(t) = H(t) x (t) + n(t) a-7n. -

Here m is a q-dimensiona! vector and H is a q by k matrix and n(t) represents measure-
ment noise. In order for the separation theorem to hold, all that needs to be assumed
about the statistics of n is that n has mean zero and is uncorrelated with the disturbing

force v.

" The following rotation will be used to describe the filters employed in the feedback
loop. )

u(® = Lim] 0

L denotes the filter. The tilde (~) is used as a reminde. thatL is not just a gain matrix
but represents a black box containing integrators, internal feedback loops, etc. The
quantity m inside the square brackets denotes the input signal to the filter. Thus L [g] {t)
denotes the output of filter L at time t when the input is the signal a.

Figure 1 is a signal flow diagram of the dynamical system and filter L.

Section 2 Minimum Variance Open Loop Estimation

Throughout this section it will be assumed that the dynamical systemis operated
without feedback, that is u = 0. The problem of estimating the state of a linear dynami-
cal éystpm driven by white noise on the basis of noisy measurements has been extensively
treated in the iiterature. The purpr.se of this section is to derive two properties of the
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optimum linear estimator which are needed in the proof of the separation theorem.

If £ is a random vector with mean zero, a generalized variance of § will br de-

fined as

\«'arQ(i) = QTQE

where Q is a positive semidefinite matrix. If Q is positive definite and not merely semi-
definite, Va\rQ will be called a positive definite generalized variance. The generalized
variance is an extension to vectors of the idea of an rms value., For exambple, if Q is

the identity matrix, Varl(g) is the mean square length of the random vec.or §.

The filter f’MV will be called a minimum variance estimator of the state X if,
for each time t and every Q, the generalized variance of the estimation error,
VarQ x(t) - LMV[m] (t)} . is less than the corresponding generalized variance for
ony other linear filter applied to the measurements, m.

In an optimization problem one expects (0o be asked to minimize a single cost
function, in this case a particular generalized variance of the estimation error, If twa
o1 more cost functions are involved, a solution which is optimum for one cost function
would not be likely to be optimum for the others and one would not expect to be able to
simultaneously minimize all of the cost functions. Therefore, one might wonder
- whether a minimum ariance estimator as defined above ever exists. In this respect
the optimumn statistical estimation problem is quite unusual, for the following result
holds: )

Remark 1 - If at time t, the filter L minimizes a given positive defnite gener-

alized variance of the estimation error, x(t) - i[ m] (t), then it minimizes

every generalized variance of the estimation error at that time. Thus, a filter
designed to minimize a given positive definite generalized variance of the esti-
~ mation error also minimizes every other generalized vériance.

Thic remark is the result of the fact that regardless of which positive definite
generalized variance is used as cost function, the criterion for an optimum filter is
that the estimation error be uncorrelated with the past measurements. That is

(g(t) - L [m] (t)) l_i;_lT(S) =0

for s £t,

Under quite general assumptions about the measurement noise n(t), Weiner3,

4, Battins, Brysons, and Deyst7 have derived filters that minimize some geuer-

Kalman
alized variance of the estimation error (e, g., Battin minimizes the mean square length

of the estimation error vector).



By the remark above, it follo'vs that these are mirimum variance estimators,
It_will be assumed that a minimum variance estimat-r L’O for the state of the open loop

dynamical system can be obtained by one of these methods,

The second remark about optimum open loop estimators concerns the minimum
variance estimator of a vectory (1) which results from multiplying the state x(t) by a

time varying matrix M{1). In this case the following nearly obvious remark applies:
Remark 2 - If
z () = M(1) x(1)

‘and i.'o [m] (t} is the minimum variance estimator of x(t), then M (t) LO [gg] (t) is

the minimum variance estimator of z (1),

Remark 2 may be verified as follows. The correlation of the y (t) estimation

error with the past measurements is given by the expression

(x(l) -MO) Ly, ] (t)) mT ) - Mm@ {(_.\5(:)'- Lyar [m] (t)) EIT(t)}

The quantity in brackets on the right hand side of the equation above vanishes since

LML is the minimum variance estimator of x. Thus, it follows that

i

~ '[:.- _
(x‘” MO Ly, [m] »m) mT@ =0
and therefore that M LML [m] is the minimum variance estimator of Y-

Section 3  Synthesis of the Minimum Variance Estimator in a Closed Loop System

As indicated in Section 1, the optimum external fecdback loop for controlling the:
dynainical system will turn out to be a minimum variance estimator of the system state x
followed by a gain matrix, M. This gain matrix is designed on the assumption that the

state estimate is exact. This system configuration is iliustrated in Fig. 2.

This section is concerned with the filter T‘MV'-

It will he assumed in this section ]
that the gain matrix M (t) has already been chosen. “

At first glance, design of a closed loop minimum variance estimator seems es-
sentially different from the design of an open loop estimator since the output of the esti-
mator effects the future states of the dynamical system. Thus, the estimator has somre
control over the future measurements and it might be wise not to estimate accurately
at the present time in or:der to create a favorable estimation environment in the future,
This would indeed be the case with a nonlinear system. I.uckily, with a linear system, _
superposition allows the effects of feedback to be eliminated since the estimator knows
without any uncertainty what the control signal u is. By means ¢f feedback within the

estimation filter the effects of the known control signals can be removed and the statis-
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tical filtering can be carried out by open loop techniques.

Figure 3 illustrates the construction of a closed loop estimator by adding e«tra
feedback loops to an open loop estimator. In practice, the open loop estimator LO
usually also contains a dynamical system model which may be combined with the one
shown in Fig. 3 to obtain a somewhat less complex overall feedback loop.

The following calculations show that the estimation error statistics for the open
and closed loop estimators are the same. From Fig. 3 it follows that ‘

x'" = Fx+Gu+vy (3-1)

and

E' Fz +Gu (3-2)

Letting y = x - z and subtracting Eq. (3-2) from Eq. (3-1) yields

y =Fy+yv (3-3)
Alse, from Fig. 3

m, = Hx-Hz+n
or

m, = Hy +n ’ ' (3-4)

Furthermore since z(0) = 0 it follows that y (0) = x (0) and the statistics of y (0) are the

same as those of x (0). Since the input to LO is m,, it follows from Egs. (3-3) and (3-4)

that the output y of L is an open loop estimate of y Thus t.ze random vector (1 3) has
open loop estimation error statistics. But y = x - z and X = x - z from Fig. 3. Thus
Y- 2 =X - g_ and hence (x - 3(‘) has the same statistics as the open loop estimation error.

The transition from a closed loop estimator to an open loop estimator ie not of
much practical interest. However, it is necessary to the theory in order to establish
the fact that there is a minimum variance closed loop estimator. Figure 4 shows how a

closed loop estimator may be used for open loop estimation by providing simulated con-

trol action through an added feedback loop. By calculations similar to those carried out '

above it can be shown that the estimation error statistics for this filter are the same as
they would have been with closed loop estimation. ) ’ -

It now follows that, if L is the open loop minimum variance estimator of the
state of the dynamical system, then the closed loop estimator L shown in Fig. 3 is the
minimum variance closed loop estimator. For, suppose there was a closed loop esti-
mator L it which at time t made some generalized variance of the estimation error
smaller than the same generalized variance of the estimation error using L it was
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shown above that the closed loop estimator L (1 can be converted to an open loop esti-
mator 1’0( n with the same estimation error statistics. Finally, this would mean that
~0(1) is a better open loop filter at time t than L0 is. This is a contradiction since Lo

is the minimum variance estimator.

An equivalent approach to closed loop estimator design is to synthesize a mini-

= L [m. u]

assuming that the control program u(t) is known a priori. To use this filter as a closed
loop estimator the signal M% is fed back to the u input of the filter. It is not obvious
that this procedure always makes sense mathematically. However, in most cases of

mum variance estimator

practical interest, the equation

~

- i m. w]

|%>

determines 3 as a function of [ and the estimation error staristics are the same as in

the case when u(t) is really known a priori.

“The fact which is needed in the proof of the separation theorem is that u = Mg
is the minimum variance closed loop estimator of the optimum control signal M x.
This follows easily from the remarks above and the fact that in the open loop case Mg

is the minimum variance estimator of M x.

Example - If the measurement noise n(t) is white and uncorrelated with the
initial state of the system, Kalman showed that the open loop minimum variance
estimator of the dynamical system state is the filter illustrated in Fig. 5 In
this filter, the weighting matrix W (t) is given by the formula

w) = Nl ewaT 1)

where T )
n{t)n" (s) = N(t) 6 (t - s)

and E (t) is estimation error covariance matrix found by solving the matrix
Ricatti differential equation

T

E' = FE+EFL+S-EHINIHE

where the matrix S(t) is defined by the equation

vy vT(s) = S5 (t - s)

Substituting Fig. 5 for L in Fig. 3 yields the filter illustrated in Fig. 6. This
filter may be simplified to yield the form illustrated in Fig. 1.

If the control input u(t) is known a priori, the open loop estimator shown in Fig. 5
takes on the modified form illustrated in Fig. 8. By connecting the u input of this filter
to the g output through the gain matrix M, the filter shown in Fig, 7 is again obtained:

12



(31wwils3 31vis)

X -

v

!
5

(SIN3IWIINSVY3IW
1NENE)  w

S NI

13



13Q0OW W31SAS WOIWVNAQG

N b A R
104100 _ , |
TYNOIS 103INOD) " - + _ > 2
|
|
§
— | ,
(31vwWuS3 31vis) X A \W/ | . . * % \w_wf
. m % N TS
|
. H
_ ,
ﬂ.l - r— ‘»I —— II.I'I-I"I'III"I"" lllllllllllllllllllllllllllllllllllll J
!
t- 1
] M
_ I ¥3114
. K 3 A dOO1
_ I : N340
_ | (-
M _
_ >—{+ > M
i * i _/
‘ \.._.-/ e e et e o . o - - - . — . —— o — - ——— o — —— —— —— -
(SIN3W3IANSY IW _
INdNI) w

9 3¥NII4

14



(TYNOIS TO¥INOD) F a—

< x|

(SINIWIUINSYIW) W

{ 34N9i4

15



(3iwwiisa 3ivis) .«.A

(1NdNI LNIWIINSYIW ) W

(IVNOIS 108INOD) A

8 3¥N9I3

16



Section 4 The Fundamental Identity

8
Kalman has shown that the contral program

w - - twoatmum s (1-1)

maminnzes the massion cest C provided that there are no disturbing forces v and that the
state is known exactly all of the time. The matrix u(t) in Eq. (4-1) is defined as the
solution of the matrix Riccati differential equation

"'sTu-c (4-2)

. _ _‘T _ o -
U’ = F U Uf*U(‘-(‘2 3

with the houndary condition

uln = C, {4-3)
It turus out that U (1) is a positive semidefinite symmetric matrix The physical
significance of U(t) is that, if the present state of the dvnamical svstem is x(t). the cost

of completing the mission employing the optimum control program is given by the formula

C® = XU (4-4)
Equation (4-4) follows from the identity proved later in this section.

A striking feature of Kalman's result is that the feedback gain matrix, -Cil GT

U,
does not depend on the initial state of the dynamical system. A priori. all that one would
expect to be able to accomplish, in synthesizing a linear feedback loop. would be to mini-
mize the mean cost function for an ensemble of representative initial states. In fact,

however, if there is no state uncertairty the actual cost and not its ensemble average can

be minimized for every initial state employing the same feedback gain matrix.

Since, in the problems under investigation on this paper, éomplele information
about the present state is nnt available to the controller, the control input to the
dynamiral system will be writlien as -
u= -C G ux iy ' (4-5)
where u represents the deviation from the optimum contronl input.

‘ In order to analyze the effects of uncertainty in the knowledge of the state und
random forces driving the cortrolled system. a formula for the cost C(t) of completing

the mission is needed.

ldentity: T T
C{t) = x (Oux(t) + v (1 x(t) + w(t) (4-6)
where U(t) is defined by Eqs. (4-2) and (4-3) and v and w satisfy the differential equations '
_ T

v = - F-GczlcTU} v-2Uv (4-7)

wi= - gT Gy_-gTALc_ ~ gTy_ (4-8)

and the boundary conditions ¢ = 0 (4-5)
] wif) = 0 (4-10)

17



Proof of identity - From *he boundary conditions imposed on U, y, and w, it

follows that C(f) as defined by the identity has the value
cn =xTcyxin

It will be shown below tha:.

Q.

cC__.T T
it =8 Cou- % Cux

(=X

Integrating Eq. (4-12) from t to { yields
o T
C(fy - Ct) = - ‘ (u C2n+x sz) dt
. t *
and by Eq. (4-11)
c) = x) Bx T + {'f(uTc u+ x1C,x dt
B St SRt L R T
which is the correét formula for the cost to complete the mission.

It only remains to verify Eq. (4-12). Now
' T
(gc_TU;c)’=2(;') U;+KTU';

Substituting Eqs. (1-4), (4-2) and (4-5) into (4-13) and collecting terms yields

GTUp? = -xT z,JGC:‘)‘lGTU+C3§ x

+2mu+w7u;
Similarly

and by (1- 1), (4-2), and (4-7)

Adding Eqs. (4-9), (4-14), and (4-15) yields

’ T

3 -1
c’'=-x jUGC,

cTu+cyfx+20TcTug-uTc,u
or collecting terms

1.T Te (o-1aT
Cax-(-C, G Ux+p Cyl-Cy/G Ux +p)

’
C =-X 3

18
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Finally by Eq. (4-5)
PR _..T
C' = -x C3,§ u Cz u
and the proof of the identity is complete.

Note that statistics have not yet entered the picture. Two significant results can
be obtained from the identity.

Result 1 - If the state x can he measured exactly and there are no disturbing
forces driving the controlled system (v = 0), then
T f i
C(t) = x () U(t) x(t) +S gT(t) Cy (1) u (1) dt (4-16)

t

This gives another proof that Kalman's feedback matrix is optimum in the
deterministic case, since the cost'is clearly minimized when u (t) = 0. Also,

with p (t) = 0, Eq. (4-16) reduces to Eq. (4-4) and the latter equation is verified.

Thig result may be proved as follows. Since v =0, Eq. (4-7) becomes

. T
v' o= -{F-GCZ‘GTU} v

with the boundary condition
- ¥(f) = 0

In this case v (t) 2 0 since it is the solution of a homogeneous linear differential
equation with a zero boundatry condition. Withy = v = 0, Eq. (4-8) becomes

w' = -~ C2u (4-17)

with w(f) = 0. Thus

f - -
w(t) =S gT C, p 9t ’ (4-18)
t

Substituting v = 0 and (4-18) into the identity yields Eq. (4-16).

Result 2 - If the disturbing force !(t) is white noise with mean zero and

covariance matrix

vy (s) = SO (t-5) | (4-19)

and u (t) and x () are uncorrelated with y (s) for t < s then the mean cost
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to complete the mission is given by the formua

f
{ET Cou + tr (SU)} dt

Ct) = xT(8) U x(t) +S
t

Proof of Result - From Eq. (4-7) it follows that

’ f
vit) = S‘ 2Q (t,8) U(s)v(s)ds ) (4-21)
- t

where @ is the solution of the differential equation

4’? = - {F—Gcz"GTU} Te

with the boundary condition @ (t, t) = I . The mean value of the second term in the
identity is thus given by the equation

!T (t) x(t)

f
23 £T(O® (¢, ) Uls) p(s) ds
t

f
20 4 { @0 ) Ute pla) xT 0 ds
t B

The matrix v () }T (t) is zero since _{T is uncorrelated with y (s) for t € s and
therefore

YWx®=0 (4-22)

From equations (4-8) and (4-10) it follows that the mean of the third term of the
iden‘ity is given by the formula

—

f
wit) = S {ou+uTqu+r v} at (4-23)
t

By means of Eq. (4-21) the first term under the integral sign in Eq. (4-23) may be
written as '

f
yTocou® = 2t { (cTw o . 9 U@ pta1 T ds
t

. Since g (t) is uncorrelated with v (s) for t$ s, v (s) ET(t) = 0 and

ol B can B



YW Gu = 0 (4-24)

By mezans of Eq. (4-21) the third term under the integral sign in Eq. (4-23) may be

written as
—_ f
gT(t)y_(t) = 2tr S $ s)U(s)_:_/.(s)z_T(t)ds
t
and therefore
f__ f f
S VT(t) vi{t)dt = 2 tr S‘ S O (t, s) U(s)_v_(s)__v (t) ds dt (4-25)
t to t

Interchanging the order of integration on the right hand side above yields

f f — f s —
3 S@(t. s)U(s)_g(s)_vT(t) dsdt = S S d (, S)U(s)_g(s)_gT(t)dt ds
tg t t o

and interchanging the dummy variables s and t results in the identity

f f —_—— f t — :
S S‘ & (t, 5) Uis) g_(s)_gT(t) dsdt = S S‘ @ (s, U g(s)gT () ds dt (4-26)
to t to to

Combining Eqs. {(4-25) and (4-26) yields

f f f —
S _gT (t)v()dt = tr S S ® (¢, s) L‘(s)_li(s)_y_T (t) dsdt
t t. t

0 0
f ¢t _—
*S‘_ ( d (s, t)U(t)g(s)gT(t) ds dt

v Y%

f

tr S S K(t, 8) v(s) vT (1) ds dt
o' )

where )

@ (t, s)U(s) if Lt <s

K(t, s) =
D (s, VUR) if t>5
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Note that K(t, s) is continuous and that K(t, t) = U(t). Now, since

vis) gT(t) = S(s) 6 (s - t), the equation above becomes
£ ot
g gT(t)g(t) dt tr S S ‘K(t, s) s(s) 6 (s - t) ds dt

‘o o to

f
S tr {U(s) S(s)} ds (4-27)

Ito

]

Finally, combining Eqs. (4-23), (4-24), and {4-27) yields
f —
w(t) = S {ET Ay + tr (U S)} dt (4-28)
t

and the result follows from Eqgs. (4-21), (4-25) and the identity.

Section 5. The Separation Theorem

Theorem: Assume that the disturbing force v is white noise and is uncorrelated
with the initial state of the dynamical system and the measurement noise n. Then the
control signal u, which minimizes the mean mission cost, is

u® = MO Ly, (m] © (5-1)

where M (t) is the optimum feedback gain matrix, M = - C, 16T U, in the case when
the state-is known exactly, and LMV is the closed loop minimum variance estimator
of the dynamical system state. If E(t) is the estimation error covariance matrix for

Lmv:

E - {5 Laey () }{_)5 Lyy () } (5-2)

and s (t) is defined by Eq. (4-19), then the mean cost to complete the mission when the
optimum feedback filter is employed, is given by the formula

C(t) = ET(t) U(t) x(t) +§ tr {MEMT'C2 + SU} dt (5-1)
. R

Proof: With any form of linear feedback, the dynamical system control
signal u is the result of passing the measurements m through some linear filter L so
that u = L [m] . The deviation of the actual control signal u froin the control signal
M x which would be employed if the state was known exactly is
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and, by Eq. (1-7) }
u=L [Hz -Mx+L g (5-2)
Also. by Egs. (1-4) and (1-7) it follows that

x'=Fx+GL [Hg +GL Mg +y (5-3)

If follows oy the hypothesis of the separation theoréem and Egs. (5-2) and (5-3) that
4 (t) and x(t) are uncorreiated with g(s‘) for t<s. Thus, Result 2 of Section 4 applies,
and the mean mission cost is given by the formula
R
C_=_,£T (t) U(t) x(t) + ‘So {Varc2

L (=) -Mz) +tr(SU) \‘3 dt (5-4)
J

The design of the filter L only affects the mean mission cost through the term

Varc T [g.: -Mx!in £q. (5-4). Obviously, -the best choice for T is the minimum
2

variance closed loop estimator of M x. By section 3, this estimator is M T‘MV where

LMV is the closed loop minimum variance estimator of the dynamical system state x.
Thus, the first half of the theorem is proved.

Also by Result 2 of Section 4, the cost to complete the mission is given by the
formula

f —F
C(t) = x'r(t) U (t) x(t) +S tr {yg Cy+ SU} dt (5-5)
t
Buat r
=M { Lyy [ -2
So
——TA ~ - [Red 1 T
, =MEMT- : (5-6)
and the second part of the theorem follows by substituting Eq. (5~6) into Eq. (5-5).
NOMENC LATURE
3 A bar beneath a quantity denotes a vector. If a vector is used in an equation

with matrices, it will be assumed to be a column vector.
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M

tr A

NOMENCLATURE (cont)

A bar over a quantity denctes the statistical mean or expected value of the

quantity
A superscript ‘I' attached to the matrix indicaies the matrix transpose position.
A prime denotes differentiation with respect to time.

Denotes the trace pf the matrix A,
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